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THE SOLUTION OF MANPOWER PLANNING PROBLEMS

BY THE FORWARD SIMPLEX METHOD

by

Jay E. Aronson and Gerald L. Thompson

ABSTRACT

The use of the forward simplex algorithm of Aronson, Morton, and Thompson

to solve the multi-stage personnel planning linear progra-ming models of Charnes,

Cooper, and Niehaus is described. Computational Results on randomly generated

problems having up to 200 periods indicate that the forward simplex method re-

quires CPU time and number of pivots which are linear in the number of periods.

The standard simplex method requirements vary with at least the cube of the number

of periods. For this reason the forward simplex method should be especially

useful for solving real-time, conversational versions of personnel (and other)

planning models.
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1. Introduction

The Forward Simplex Method due to Aronson, Morton, and Thompson [1,3] is

an adaptation of the ordinary simplex method for solving general dynamic

(staircase) linear programs. Such models typically occur in problems in which

it is necessary to plan over time, and commonly occur in the management of

personnel, production, energy, and economic systems.

In the present paper we discuss the application of the forward simplex

method to the solution of the manpower planning models originally developed by

Charnes, Cooper, and Niehaus [5,6]. It would also be applicable (although we

have not specifically tested it) to solving in real time the conversational

version of these models discussed by Niehaus, Sholtz, and Thompson [10,11].

A brief discussion of the forward simplex algorithm is given in Section 2

and a description of its computer implementation appears in Section 3. A

summary of the manpower planning model and the computation tests made with it

appear in Section 4.

A series of randomly generated problems having from 5 to 200 periods were

solved. The largest (200 period) problem was solved in a little more than

2 seconds on a DEC-20 computer without matrix reinversions. Its solution by an

ordinary simplex code would have involved a tableau of size 2600 rows and

2600 columns, which would have been a challenging problem for a standard LP code

to solve. A 20 period problem required more than 1000 seconds for our standard

LP code to solve. Regression results indicate that the number of pivots and

CPU time required by the forward simplex code vary linearly with the number of

periods.
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2. The Forward Simplex Method

In this section we present a brief description of the Fcrward Simplex

Method. For a more detailed discussion, the reader is referred to [3].

Consider the general staircase linear program:

T
(a) min Z ct Xt

t=1

subject to

(1) (b) A1X 1 = d1

(c) Bt.IXt. +A tX = dt  , t 2,...,T

(d) Xt  0 t4t
where ct is I by nt, At is mt by n t, Bt is mr+ I by nt, dt is mt by 1,

and Xt is nt by 1. We assume for simplicity, At = A and Bt = B for

t 1 1,...,T, where A and B are fixed matrices. This assumption can be

easily relaxed. The matrices A and B are partitioned as described in [3].

Let (1) be a T-period subproblem of some longer problem with

length T p. The Forward Simplex Method first partially solves the 1-period

subproblem. It then augments this solution to form an initial basic

feasible solution to the 2-period subproblem, partially solves this one,

and so on for T = 3 to T. (A partial solution restricts pass-on

variables of the current subproblem period to be nonbasic at zero).

Augmentation and pivoting continue until either the T -period problem
p

is solved, or the entire allowable tableau space fills up. When the

tableau is full, the available tableau space is considered to be a small

window into the entire problem. This tableau window is slid down .and to the
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right, discarding early stable data, and the newest data are augmented

into the window. A wrap-around tableau feature is used instead of actually

sliding the window. This is discussed in detail in [3]. This technique

works because the Forward Simplex Method maintains as much as possible of

the staircase structure of (1) insolving the problem. In fact, problems

exceeding ten times the tableau window size were solved. The augmentation

in a period, T, is performed by including the (T-1) period B matrix, and

the T-period A matrix in the tableau. The entering column is chosen from

right to left, the minimum ratio test is performed from bottom to top.

The Forward Simplex Method is efficient because it exploits a natural

decomposition [3] of the problem. No reordering of the rows and columns is

necessary to maintain the staircase structure. Thus, there is an automatic

spike reduction [8], [9]. Intuitively later period forecasts should not have

much impact on early decisions. The natural decomposition of the staircase

problem tends to isolate early decisions from the effects of later period

decisions.
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3. The Code

This first version of the Forward Simplex Method (FORLP) was written

in FORTRAN and developed on the Carnegie-Mellon University DEC 20/60 B.

It requires 256K of addressable core. The global data require 224K,

leaving 32K for local data. The code can handle up to 5000 time periods.

The maximum dimensions of the A and B matrices are 22 by 22. The

tableau window is dimensioned 336 by 322, so that 14 periods of the largest

A matrix fit. In the interest of programming in "standard" FORTRAN, all

do loops increment. To achieve portability, only the statements that

open and close disk files need be changed.

The code utilizes the condensed Tucker tableau for ease of

implementation. This is a standard simplex tableau but without the

identity matrix that corresponds to the basic columns. Later versions of the

code will utilize a compact form of the inverse. As outlined in [31,

t t
an auxiliary variable (Xn+I) and constraint (X +1 - 1) are added to

each period. In the case of equality constraints, one extra row is

added, per period, to convert them to inequality constraints. A

perturbed right hand side is used to handle degeneracy.

All input is read from a disk file. Output, at the user's option, is

printed onto a disk file, or onto his terminal. When the tableau window is

full the code searches for a heuristic planning horizon (3]. If one is

found, the primal and dual solutions up to the planning horizon are printed

onto two disk files, the appropriate tableau space is cleared, and

augmentation continues. When no such horizon exists, the problem requires

a larger window.
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Data must be appropriately scaled, all lower bounds on variables must

be zero, and the constraint matrices must be partitioned as described

in [3].

No basis reinversion is employed in this version of the code. The

natural decomposition of staircase models effectively blocks numerical

errors from rippling from early periods into later ones, so that numerical

difficulties were not encountered on the test problems tried.

For comparison purposes, a standard linear programming code (3TDLP)

was developed from FORLP. This code also utilizes a condensed Tucker

tableau, but with a single auxiliary row and column, and if necessary, a

single extra row for handling equality constraints. The first positive

reduced cost rule is used to determine the entering variable. The

standard LP code was used on all three models as a benchmark for the Forward

Simplex Method. Results for both codes are reported. Unfortunately, due to

space limitations the standard LP code could only solve problems with a

maximum tableau size of 334 by 321. In spite of this space problem, STDLP

was an adequate measure of the kind of performance expected from a

standard LP code. Next the computational results are presented.

* ~-
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4. The Manpower Planning Model

Here, the performance of the Forward Simplex Method on a version of

the manpower planning model in [10] is discussed. This is a simplified version

of a goal programming model that deals with intake or recruiting requirements

planning for the Naval Underwater System Center (NUSC), a large naval laboratory.

There are two manpower grades, with specified transition probabilities of

manpower from grade to grade and out of the system. The model is now

presented.

iThe goals or requirements for grade i in period t are Dt. The

on-board manpower of grade i in period t is Ei the manpower over the

i igoal (under time) is Ut, the manpower under the goal (overtime) is Vt.ii

the number hired at the beginning of period t is Ht and the number
i i i - epcieyfired is F . Lower and upper bounds on E are and respectively.

The upper bound in-grade constraint limit in period t is Gt, the upper

bound on manpower requirements is Mt. and the budget is B t . The transition

probabilities are given by p" for an employee's grade classification

changing from grade i in period t-I to grade j in period t. Penalties of
*i i Ui adireuedt

h, f, u, and v are incurred per unit of l, FtU, and Vt required to

meet the goal. The T period problem is stated as problem (M) in

T

Figure 1.

Si
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T 2
(a) min Z E (hH t + fF t +UU t +vV t)

tml i-It t

subject to

£i £ ii
(b) Et - + V - + fi 0 ; i=T,2;t=1,...,T

(C) p1 1EI- 21 E2 + i + 1 0 i=1,2;t:1,..,T

1 1 2,2
(d) bt t t Et < Bt

(e) c tE t + CtEt G- Gt
t t tt
I H)1 22•

(f) Et +E <M ,

(g) i=1,2;t=l,..,T

£ i

(h) Et > i ; i=1,2;t=l,...,T

(i) EtU , Vt, I F > 0( t Et Ut t -t

Figure 1. In this model, two of the ten variables are pass-ons.

For the model tested the costs and parameters were: h-1, f=3, u'-v-2,

11 1 12 ". p21 2, p22 17, bI b1
Pt t =7=b10,00, c t  l, and
2
2 = 2.' To make each T period subproblem feasible with the pass-on variables

I nonbasic at zero, extra slack variables at high costs were added to constraint

(Mh). After adapting the matrices to the proper format, they were dimensioned

13 by 13. Only 24 periods fit into the tableau window.
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Eleven problems with 20 time periods were generated. All right hand

sides, except for (1Tg-h) were generated with a cyclic pattern of period

six, plus a random component drawn from a uniform distribution. For each

generated right hand side parameter, the cyclic patterns were offset by a

fixed number of periods.

Both FORLP and STDLP were used to solve the eleven problems. The

problem length T started at 5 and has incremented by 5, until the 20 period

problems were solved. For problems solved with FORLP, the mean pivoting

CPU time versus T is plotted in Figure 2. In Figure 3 the same results appear

for problems solved with STDLP. The mean number of pivots versus T for

problems solved with both FORLP and STDLP is plotted in Figure 4.

For the model, the regression analysis results are given in (2) and (3).

[2 CPU Time FOR - 332.818 + 124.673T ; R = .997

No. of Pivots=FO - 19.227 + 16.242T R = .999,

[ CPU TimeSD - 22.725T3 .594  ; R = 1.000

No. of PivotsSTLP - 365.306 + 112.453T ; R = .995

At T = 20 the mean total pivoting time of FORLP was about .27 of that of

STDLP (about 2 seconds compared to 1100). FORLP is linear in T, while

STDLP is at least cubic. For this data set, STDLP was unbounded for one

problem at T - 10, two at T a 20, three at T - 30 and 40, with one infeasible

at T - 40.

For this problem set, FORLP required about 80% more time to perform
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all extra overhead, disk I/O, and solution reconstruction at T = 20.

STDLP required about .27. more time. Even with the overhead, FORLP is linear

in T, and much more efficient than STDLP.

Next, eleven periods of 200 per-iods were generated with the same

demand pattern. For this problem set solved with FORLP, the problem

length was incremented by 25. Normally, a tableau dimensioned 2600 by

2600 would be required for a 200 period problem. Here the tableau

window had dimensions of 312 by 312 (for 24 periods).

The mean pivoting CPU time versus T is plotted in Figure 5. In

Figure 6, the mean number of pivots versus T is plotted. Since the

wrap-around feature is used at T = 25, the first few points of the mean

CPU time curve are included in this analysis. The regression results are stated

in (4).

CPU TimeFORLP -3139.99 + 232.68T ; R = 1.000

(4) No. of Pivots FORLP =. -15.383 + 15.373T ; R -1.000

Both regressions are linear, the total solution CPU time was about 237

more than the pivoting CPU time at T = 200. FORLP solved the 200 period

problems in about 43 seconds, much less than the 1093 seconds required

by STDLP to solve the 20 period problems. Again, the performance of

FORLP proved linear for both solution time and the number of pivots.

I7
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Figure 2: Mean Pivoting CPU Time versus T for 11 randomly generated

manpower planning problems solved with FORLP
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Figure 3: Mean Pivoting CPU Time versus T for 11 randomily generated
manpower planning problems solved with STDLP
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Niumber of Pivots

0 STDLP
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1000
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Figure 4: Mean Number of Pivots versus T for 11 randomly generated

manpower planning problems solved with FORLP and STDLP
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*Figure 5: Mean Pivoting CPU Time versus T for 11 randomly generated
manpower planning problems solved with FORLP
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Numiber of Pivots
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Figure 6: Mean Numiber of Pivots versus T for 11 randomly generated
manpower planning problems solved with FORLP
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7. Conclusions

The computational results here indicate that the Forward Simplex

Method solution time is linear versus worse than cubic for a standard

LP code. The Forward Simplex Method was able to solve problems more than

ten times the size that the conventional code could accommodate. In fact,

for problems that the conventional code could solve, it required 28 to

500 times as much pivoting CPU time to perform from 2 to 6 times the number of

pivots that the Forward Simplex Method used.

The maintenance of the staircase structure and natural decomposition

of large dynamic planning models are the features of the Forward Simplex

Method which give its computational advantage. Thus, the extension of forward

techniques to dynamic linear programs is a useful new method for solving

staircase structure problems efficiently. It should be particularly useful

for solving large multi-stage planning problems in a real-time conversational

environment such as those described in [10, 11].

I NW
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